Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.

نویسندگان

  • Pei Zhao
  • Sungjin Kim
  • Xiao Chen
  • Erik Einarsson
  • Miao Wang
  • Yenan Song
  • Hongtao Wang
  • Shohei Chiashi
  • Rong Xiang
  • Shigeo Maruyama
چکیده

Using ethanol as the carbon source, self-limiting growth of AB-stacked bilayer graphene (BLG) has been achieved on Cu via an equilibrium chemical vapor deposition (CVD) process. We found that during this alcohol catalytic CVD (ACCVD) a source-gas pressure range exists to break the self-limitation of monolayer graphene on Cu, and at a certain equilibrium state it prefers to form uniform BLG with a high surface coverage of ∼94% and AB-stacking ratio of nearly 100%. More importantly, once the BLG is completed, this growth shows a self-limiting manner, and an extended ethanol flow time does not result in additional layers. We investigate the mechanism of this equilibrium BLG growth using isotopically labeled (13)C-ethanol and selective surface aryl functionalization, and results reveal that during the equilibrium ACCVD process a continuous substitution of graphene flakes occurs to the as-formed graphene and the BLG growth follows a layer-by-layer epitaxy mechanism. These phenomena are significantly in contrast to those observed for previously reported BLG growth using methane as precursor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllable and Rapid Synthesis of High-Quality and Large-Area Bernal Stacked Bilayer Graphene Using Chemical Vapor Deposition

Bilayer graphene has attracted wide attention due to its unique band structure and bandgap tunability under specific (Bernal or AB) stacking order. However, it remains challenging to tailor the stacking order and to simultaneously produce large-scale and high-quality bilayer graphene. This work introduces a fast and reliable method of growing high-quality Bernal stacked large-area (>3 in. × 3 i...

متن کامل

Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition

Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving prope...

متن کامل

Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy.

The growth of large-area bilayer graphene has been of technological importance for graphene electronics. The successful application of graphene bilayers critically relies on the precise control of the stacking orientation, which determines both electronic and vibrational properties of the bilayer system. Toward this goal, an effective characterization method is critically needed to allow resear...

متن کامل

Bilayer Graphene Growth by Low Pressure Chemical Vapor Deposition

Successfully integrating graphene in standard processes for applications in electronics relies on the synthesis of high-quality films. In this work we study Low Pressure Chemical Vapor Deposition (LPCVD) growth of bilayer graphene on the outside surface of copper enclosures. The effect of several parameters on bilayer growth rate and domain size was investigated and high-coverage bilayers films...

متن کامل

Supporting Information The Controllable Poly-crystalline Bilayer and Multilayer Graphene Film Growth by Reciprocal Chemical Vapor Deposition

Conditions for Reciprocal CVD Figure S1. Conditions used for graphene growth. (a) Temperature profile and flow parameters during the growth of epitaxial multilayer or poly-crystalline bilayer graphene. (b) Table listing the growth conditions used to prepare the graphene/h-BN heterostructure and the multilayer graphene.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2014